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The Induction Period in Gaseous Thermal Explosions1 

BY O. K. RICE,1* AUGUSTINE O. ALLEN AND HALLOCK C. CAMPBELL 

We have recently studied the explosions of 
azomethane2a and ethyl azide,2b and have shown 
that they are probably thermal explosions, due 
to self-heating of the gas on account of the exo-
thermicity of their slow decompositions. In 
these papers we have compared our results with 
the theory of Semenoff,3 which gives the critical 
explosion pressure as a function of the tempera
ture. Now it is observed when the gases are ad
mitted to the reaction vessel that an appreciable 
time elapses before the explosion occurs. These 
lag times or induction periods have been measured 
in many cases, and in this paper we shall present 
these data, and discuss the theory. We shall see 
that this enables us to make an estimate of the 
heat of decomposition. 

The basis of the theory which we shall present 
consists in following the change of temperature 
of the gas as reaction proceeds. An equation 
giving the amount, T, by which the temperature 
of the reacting gas exceeds that of its container 
as a function of the time and from which the in
duction period can be obtained has been given 
by Allen and Rice.2a The rate of production of 
heat is given by the expression QknV, where Q is 
the heat of reaction per mole of gas decomposed, 
V the volume of the reaction vessel, n the number 
of moles of reacting gas per unit volume, and k 
the rate constant, k = Ae~E/R{T + T°\ A being a 
constant, R the gas constant, E the activation 
energy for the unimolecular decomposition, and 
T + To the temperature of the gas; To is the 
temperature of the reaction vessel. We may 
write n = n0e~~kT, where n0 is the initial value of n 
and t is the time, provided we assume as an ap
proximation that k is constant during the induc
tion period. Heat is removed from the gas by 
conduction and convection at the rate axT, a 
being the wall area and x a constant. Subtract
ing the rate of loss of heat from the rate of pro
duction and dividing by C, the total heat ca
pacity of the gas in the vessel, we get the rate of 
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change of the temperature of the gas; making a 
slight reduction we obtain the equation 

AT/Ar = e-E/R(T + To) e-k(C/B)T - {ax/B)T (1) 

where B = QAn0V and T = tB/C; here t is meas
ured from the moment the gas is admitted to the 
vessel, assuming that it warms up instantly to the 
temperature Ta, an assumption that will be dis
cussed later. Since C as well as B is proportional 
to W0, we may, for any given series of runs involv
ing a definite substance and reaction vessel at a 
definite external temperature, To, but with vary
ing pressure, consider r to be a measure of the time 
from the start of the experiment expressed in a 
special set of units. Likewise the quantity BI ax, 
assuming that x is independent of the pressure, 
is a measure of the pressure used in a given experi
ment, and its value determines whether or not 
an explosion occurs in an experiment performed 
at a given temperature, To- In a case in which 
an explosion occurs integration of (1) will show 
that the temperature rises very suddenly after a 
lapse of time, and the time at which this sudden 
rise occurs may be set equal to the induction pe
riod,4 while if explosion does not occur the tem
perature merely rises to a maximum and falls off 
again. 

The differential equation (1) cannot be inte
grated analytically, but it may be solved nu
merically by the use of the Runge-Kutta formula.5 

In order to compare with the experimental data 
it is necessary to go through this process for differ
ent values of Tn and ax/B. When this is done 
the value of r at which the explosion occurs is 
known for any given conditions; this may be com
pared with the observed induction period t and 
BfC found. Now BfC = QAnaV/nVCM = 
QAfCu where CM is the heat capacity per mole 
of azomethane; as A is known, we can calculate 
(?/CM which should be practically constant for 
all experiments with a given composition of gas. 
If there are r moles of inert gas per mole of azo-

(4) The same principles have been used by Tizard and Pye [Phil. 
Mag., 44, 79 (1922)1 in discussing the oxidation of certain hydrocar
bons, but their experiments were of a different type than ours, and 
their equations cannot be used in treating the experiments of the 
type considered here. 

(r*) Scarborough, "Numerical Mathematical Analysis," The Johns 
Hopkins University Press, p. 273. 
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methane, then CM = CA + rCQ, where CA is the 
molal heat capacity of azomethane and CG that 
of the inert gas. 

In order to take into account the correction 
factor e~k{C/B)T, which allows for the amount of 
gas decomposed before explosion takes place, and 
which affects the induction period near the ex
plosion limit and also changes the value of the 
critical explosion pressure somewhat, it is neces
sary to assume a preliminary value of C/B, which 
is precisely the quantity we are trying to obtain. 
One is thus required to make a series of successive 
approximations, a very long process on account of 
the tedious calculation involved in the use of the 
Runge-Kutta formula. This fact, together with 
the desirability of having an easy way to perform 
the integration for a considerable range of values 
of the constants involved, has led us to seek an 
approximate method of calculation. This will 
be presented in §2. I t is first necessary, how
ever, to carry out the more exact integration of 
Equation (1) for some special values of the con
stants involved, in order to gain some informa
tion about the general character of the solutions 
of (1) and to be able to verify the accuracy of the 
approximate method. 

For this purpose we have taken among others 
the case where T0 = 6300K. and kC/B = 1.27 
X 10~21 and E = 51,200 calories per mole. 
These values were estimated to correspond 
roughly to the situation with azomethane at 
63O0K. Figure 1 shows the calculated T vs. r 
curves for various values of ax/B. I t is seen that, 
as expected, the curves are definitely of two 
classes, the curves for small values of ax/B (large 
values of the pressure) being such as one would 
expect to correspond to an explosion, while the 
curves for large values of ax/B correspond to a 
quiet decomposition in which the temperature 
reaches a relatively low maximum, and then 
drops off. In the case of the explosive curves, 
the theory does not predict an exact instant for 
the explosion to occur, but certainly fixes it within 
an interval of time much smaller than the experi
mental error in determining the induction period, 
The critical value of ax/B appears to lie between 
2,86 X 10"19 and 2.87 X 10-19. It is, however, 
not certain that this value can be determined as 
closely as indicated by these figures, for very 
close to the explosion limit the curves are very 
sensitive to slight inaccuracies in the calculation, 
and it is quite possible that one which appears to 

be explosive actually should not be, or vice versa. 
But if the curve is only so far from the explosion 
limit as the one for ax/B = 2.84 X 10 -19 in Fig. 1, 
the critical r for explosion is no longer sensitive 
to slight errors. For values of the pressure very 
near the explosion limit very large values of r are 
theoretically possible, but experimentally these 
have not been realized. I t is, in general, impossible 
to adjust the pressure closely enough to get within 
the critical range of pressures, and it is also prob
able that the theory fails in this region, as k is not 
actually constant as we have assumed. 
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T X 10"ll>. 

Fig. 1.—Theoretical temperature time curves at 630°K. 
for various values of (Ax)ZB(X IC)19). 

In spite of the probable failure of the theory for pressures 
very close to the explosion limit it will not be without in
terest to examine a little more closely the nature of the 
solutions of the differential equation (1). Every one of 
the T vs. T curves will ultimately reach a maximum, even 
though it be of the explosive type. This maximum will 
necessarily lie on the locus 

(kC/B)r = -EfR(T + T0) - \n(ax/B) - In T (2) 
which makes dT/dr, as given by Equation (1), zero. The 
locus denned by Equation (2) for ax/B = 2.86 X 1 0 - " is 
shown (broken curve) in Fig. 1; the loci for other values 
of ax/B near this will be of just the same shape, but dis
placed along the T axis a short distance. These loci are 
s-shaped, starting at T = oo for T = 0 and eventually 
reaching T = - » (or T = « . There are two points 
where the locus (2) has a vertical slope; one is shown, 
the other one is at a value of T approximately eqvial to 
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E/R, which is of the order of 25,000°, and a value of r 
approximately (B/kC) (EfRT0 - 1 + 2 ln(RT0/E)), or 
about 32 X 1019, greater than the value of r for the first 
point of vertical slope. This value of T gives the longest 
theoretically possible induction period. The explosive 
curves theoretically reach the upper branch of (2), tha t 
is, the part of the locus defined by (2) which is going out 
to T = — m ; the values of T thus theoretically attained 
are greater than 25,000°. Such values will obviously not 
actually be reached, for one reason because k will not 
actually be independent of T and therefore the azo-
methane is used up before such temperatures are 
reached. The curves which have their maxima on the 
lower and middle branches of (2), up to the second point 
of vertical slope, where the locus defined by (2) turns 
around and heads toward T — — c°, are the non-explosive 
curves. Theoretically there is a perfectly continuous 
transition between explosive type and non-explosive 
type curves, the transition occurring in an astonishingly 
small range of values of ax/B. 

§2. Approximate Integration of Equation (1) 

In order to get an approximate integration of 
Equation (1) we first see what can be done if the 
term e-

kt-c/B)T J3 s e t equal to 1. Under these cir
cumstances we may, from Equation (1), write for 
rc, the critical value of T at which explosion takes 
place 

X 2RTt*/E 
[e-E/R(T + To) - ( 0 * / B ) r ] - i d r (3) 

The upper limit in this integral is obtained in the 
following way. In the theory of Semenoff the 
rise in temperature at the explosion limit is equal 
approximately to2a RT0

2ZE, this being also very 
approximately the temperature at which the 
locus defined by Equation (2) has infinite slope, 
as shown in Fig. 1. From Fig. 1 it is obvious 
that, though TC cannot, as we have said, be ex
actly defined, it will be very reasonable to deter
mine a value by integrating to the temperature 
where T is equal to twice the value RT0

2ZE. 

If we make the allowable approximation6 

(1 + T/T0)~
l = 1 — TZT0 then we may write 

Equation (3) in the form 
CtRTtVE 

To = J [e-E/RT, eET/RTS - (ax/B)T]-'dT 

° (4) 
(6) We may note that under this approximation Equation (1) 

may be written in the form 

dy/dJ = ef>- i e—t>J — fy 
where 

J - T(E/RT0*)ei - B/RT, 
* = k(C/B)(.RT<?/E)eB/RT<,-i 

and y a n d / are defined just following Equation (4). This would 
make the Runge-Kutta calculations much easier, for the effects of 
To and k(C/B) are both taken care of essentially by the one parame
ter <f>. This would greatly lessen the number of calculations needed, 
but they are still sufficiently laborious to make it seem worth while to 
develop the approximation method of this section. 

If we set y = ETZRT,? a n d / = (ax/B) {RT?/E) 
es/RTo - i t h i s t a k e s t h e f o r m 

T0 = {RT„*/E)eE/Rn-iiB (5) 

where 

1» - P (.*> - l - fy)~l dy (6) 

J0 may be evaluated as a function of/ from Equa
tion (6) by numerical integration. By its defini
tion, / is inversely proportional to P, the pressure, 
x being assumed independent of pressure. 

Now the equation for the critical explosion 
pressure7 is also based on the same approxima
tions made so far in the considerations of this 
section. Using this equation we see that at the 
critical explosion pressure / is equal to 1 and we 
may set 

/ = P*/P (7) 

where P* is the critical explosion pressure of the 
approximate theory. For explosive runs, of 
course, / < 1. 

Allowance for the term e~
HC/B)T of Equation (1) 

may be made in an approximate manner as fol
lows. In the actual calculation of the curves in 
Fig. 1 one finds that the value of r at which the 
curve begins to rise rapidly is largely determined 
by its behavior in the neighborhood of the inflec
tion point, which occurs at a value of r very near 
to TC/2 and a value of T very near RT0

2/E. This 
suggests that we replace the exponential term in 
question by a sort of average value, namely, 
e-k*{C/B)u/^ w h e r g k* i g t h e v d u e o f t h e r a t e 

constant at the temperature T0 + RT0
2/E. We 

then get in place of Equation (4), the equation 

X 2RTt'/B 
[e-E/RT, eET/Rn'e-k*{C/B)Tc/i _ 

(ax/B)T]~idT (8) 

in which TC is involved inside the integral sign as 
well as on the left-hand side of the equation. 
This equation is to be solved for TC. It is conve
nient to define a quantity J, similar to the quan
tity J0 of Equation (5) by the relation 

T0 = (RT0
2/E)eE/RTt - i J (9) 

the difference between the value of TC obtained 
from Equation (8) and that given by Equation 
(4) being expressed by the difference between J 
and J0. If we make the substitutions following 
Equation (4) and, further, set 

9 = k*(C/2B){RT0*/E)eE/RTt - i (io) 

t h e n i t is r e a d i l y seen f r o m E q u a t i o n s (8) a n d (9) 

t h a t 

• P ( g y - i _ eeify)-idy (11) J - eOi 

(7) Ref. 2a, Equation (5). 
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Now the integral appearing in Equation (11) is 
simply the integral Io with the argument / e e / 

appearing in place of / . We can thus write a 
functional equation connecting I and I0 

1(f) = e9M I0(JeMIf)) (12) 
in which the quantity in parentheses following 
an I or Jo is the argument of which that I or J0 is a 
function. This functional equation for I may 
be solved and I found as a function of / by the 
method presented in the Appendix. The results 
of these calculations for a number of different 
values of 9 are shown in Fig. 2. (The values 
given on the curves are 
1760 9.) 

Now the fact that the 
curves bend back indicates 
that for any given value of 
G there is a certain largest 
value of/above which there 
are no real solutions of the 
functional Equation (12). 
This suggests that this larg
est value of / corresponds 
to the corrected explosion 
limit. Equation (7) gives / 
in terms of P and P*, the 
latter being the uncorrected 
critical pressure. If we wish 
to get I for any 6 as a func
tion of P/Pi* where Pi* is the corrected critical 
pressure we can do this by noting that8 

P/Pi* = fe/f (13) 

where / e is the largest value of / for the given 9. 
Thus, to get J as a function of P/Pi* o r / e / / we 
simply move the curves of Fig. 2 to the left till the 
point of infinite slope touches the axis, log / = 0. 
The result is shown in Fig. 3. The real justifica
tion of this procedure is that in special cases the 
curve obtained agrees with the result obtained 
by integrating Equation (1) directly, using the 
Runge-Kutta formula. This is shown in Fig. 3. 
The circles and triangles represent the values 
Tj{RT<?/E)eE/RTa ~\ where TC has been calculated 
by means of the Runge-Kutta formula from (1), 
and P/Pi* has been set equal to the critical value 
of Ax/B divided by the value of Ax/B correspond-

(8) Equation (13) can be used to correct the critical pressure given 
by the SemenofE theory. However, Equation (14) shows that 6 
should be practically constant for any given explosive reaction over 
the range of temperatures in which it can be studied. The correc
tion to log P* is therefore essentially a constant independent of the 
temperature, and hence is of no practical importance. However, 
for purposes of notation, it is assumed hereafter in this paper that 
the experimental critical pressure gives a measure of Pi*. 

ing to the particular value of rc. I t is seen that 
the agreement is very good, especially when one 
bears in mind that the Runge-Kutta method does 
not give the explosion limit very accurately, and 
that all points of a given set of calculations should 
be shifted horizontally by an amoimt correspond
ing to the error in the explosion limit. We may 
therefore use the the approximation developed in 
this section with some confidence, except very 
close to the explosion limit where all calculations 
break down. Since all our calculations do break 
down near the explosion limit it is not surprising 

8 9 10 

that an attempt to go beyond the explosion limit 
results in the upper branches of the curves of 
Fig. 2, which can have no physical meaning. 

In an experiment we have a measurement of 
the time lag, which we may call tc and which we 
may assume gives us (C/B)TC. Furthermore, we 
know the ratio of the pressure to the critical pres
sure, which gives Pi*/P. We also know T0 and 
k*. We therefore choose from among the curves 
of Fig. 3 that one which gives us the correct value 
of (C/B)TC = 291/** (see Equations (9) and (10)) 
at the given value of Pi*/P. We thus find the 
value of 9 corresponding to the particular experi
ment, and from this we can get Q/CM< where CM 

is the heat capacity of the reacting gas per mole 
of azomethane. This quantity is obtained from 
9 by noting that k* = Ae~EmT' + RT°'/E\ which is 
approximately equal to Ae1- E/RT\ Substituting 
this into Equation (10), and remembering the 
definitions of C and B we get 

e = (Cu/Q)(RTf /2E) (14) 
Since Q/CM will not be expected to vary very 
much over the range of temperatures which can 
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Fig. 3.—Data for Runge-Kutta points: O, E = 51,200, T0 = 63O0X., 1760 9 = 3.66; O, E = 51,200, 
T0 = 6140X., 1760 9 = 6.66. A, E = 41,500, T0 = 5530K., 1760 B = 7.82. 

be studied, we should get the same value for all 
experiments with a given substance or mixture, 
and this will be a test of the theory 

§3. The Heating of the Gas 

In the above discussion we have neglected the 
time it takes to heat up the gas when it enters the 
reaction vessel. I t is rather difficult to make an 
exact calculation of this quantity because the 
gas enters the reaction vessel through a hot tube 
where it receives a preheating, in what is probably 
a negligible length of time. If this heats the gas 
to a temperature equal to T0 — T', then the time 
(multiplied by B/ C) for the gas to heat up to the 
wall temperature, T0, is, from Equation (1) (which 
should hold for this process as it does for the 
heating up of the gas after the temperature T0 

has been reached) 

T> = f ° f [e-E/R(T + To) - (ax/B)T]-1IiT (15) 

In this we have set the term e~
kt-c/B)T equal to 1, 

which is surely reasonable in this case, T' deter
mines the time which elapses before "zero time," 
that is before the time at which the gas is at the 
temperature T0, and it is to be added to TC before 
comparing with the experiments. Making the 
same substitutions as were made to get TC in the 
form (5) we find 

r ' = (RT<?/E)eE/RT* - 1 I' (IR) 

where 

/ ' = P (&-1 -fy)-ldy (17) 
J-T IT* 

where T* = RT0
2/E. We have evaluated I' 

for a number of values of/ for T'/T* = 5 and for 
T'/T* = 10. These values are given in Table 
I together with values of I0. It will be seen from 
this table that I' is not very sensitive to T'/T* 
when the latter is as great as 5, and all our subse
quent calculations have been carried out using 
this value. 

/ 
0.99 

.98 

.96 

.95 

.94 

.90 

.85 

.80 

.70 

.50 

TABLE I 

VALUES 
/ 0 

40.81 
27.22 
18.80 

14.82 
10.89 

7.04 
5.392 
3.819 

OF I0 AND I' 
V(T'/T* = 5) 

3.091 

3.184 

3.317 
3.464 

4.010 
5.152 

1'(T'/T* = 10) 

3.791 

3.914 

4.087 
4.280 

§4. Comparison with Experiment 

Tables II and III show all measurements of 
the induction period with azomethane and all of 
those made with ethyl azides No. 5 and No. 8,9 

(9) See the discussion by Campbell and Rice, Ref. 2b, of the vari ' 
ous samples of azide used. 
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with the exception of some in which the tempera
ture was uncertain. These runs are arranged in 

TABLE II 

INDUCTION PERIODS FOR AZOMETHANE EXPLOSIONS 

Expt. 

255 
253 
248 
247 
244 
245 
242 
158 
157 
156 
153 
155 
154 
151 
150 
147 
148 
144 
146 
145 
141 
142 
140 

Temp., 
0C. 

100% (CHa)2N2 

341.0 
341.0 
370.0 
370.4 
358.3 
358.3 
357.7 
371.9 
371.9 
371.5 
346.8 
347.0 
347.2 
353.3 
353.3 
386.5 
385.7 
378.2 
378.5 
378.5 
363.5 
363.4 
363.6 

Press. 
(total), 

mm. 

200-cc. bulb 

189 
193 
30 
31.5 
54.5 
56.5 
55.5 
27 
29 
32 

101.5 
103 
104.5 
66 
68 
17.5 
19 
22 
23 
24 .5 
37.5 
38.5 
41 

Ind. 
period, 

sec. 

CO 

7.5 
OO 

2.0 
CO 

3.8 
4 .0 

GO 

2 .2 
1.4 

CO 

5.2 
4 .8 

CO 

5.5 
CO 

1.0 
OO 

1.4 
1.2 

CO 

4.0 
3 .1 

100% ( C H S ) 2 N 2 50-cc. bulb 

265 353.0 149 «= 
263 353.5 152 3.2 
261 355.3 132 
260 355.0 137.5 3.4 

50.7% (CHs)2N2. 49 .3% N2 200-cc. bulb 

287 
286 
285 
284 
279 
283 
282 
281 

374.8 
375.1 
375.2 
374.8 
361.3 
361.0 
361.4 
361.3 

44. 
45, 
49 
53 
90 
91 
93 
95 

4 .1 
2.0 
2.0 

CO 

4.1 
3.6 
3.6 

32.5% He, 67.5% (CHs)2N2 200-cc. bulb 

180 
179 
177 
176 
186 
185 
172 
171 
170 
169 
174 
175 
US 

376.8 
376.8 
377.0 
377.3 
352.0 
352.0 
352.0 
352.0 
352.0 
352.0 
363.7 
363.7 
363.9 

38 
38. 
41. 
44 

139 
141 
144 
147, 
150 
153 

69 
71 
77 

2.0 
< 1 . 0 
< 1 . 0 

CO 

4.5 
3.0 
3.0 
2 .6 
2.6 

CO 

4.2 
2.0 

59.2% He, 40.8% (CHs)3N2 200-cc. 

221 
223 
222 
218 
217 
213 
215 
214 
212 
210 
209 
207 
206 
205 
203 
202 
201 
200 
199 
190 
192 
191 
187 

377.2 
377.2 
377.0 
372.0 
372.0 
367.9 
367.9 
368.3 
367.9 
359.2 
359.4 
359.5 
359.4 
356.9 
356.9 
356.7 
356.8 
349.9 
351.3 
372.0 
372.3 
371.7 
359.5 

75.5 
77 
79 
99 

101.5 
121 
122 
123.5 
126.5 
166.5 
168 
172 
181 
209 
210 
219.5 
231 
296.5 
307 

90 
95.0 
99.5 

214 

76.3% He, 23.7% (CHs)2N2 200-cc. 

241 
240 
234 
231 
235 
230 
229 
228 
226 
225 
224 

338.7 
339.0 
369.4 
369.5 
369.3 
361.8 
362.0 
362.0 
361.8 
361.8 
362.0 

143 
144 
220.5 
221.5 
223 
322 
323 
328.5 
336 
357 
377.5 

bulb 
CO 

2.0 
1.8 

CO 

3.0 
CO 

3.0 
2.0 
2.4 

CK 

4.0 
3.0 
2 .8 

CC 

4.4 
3.2 
3.0 

CO 

4.0 
OO 

1.4 
1.4 
2.0 

bulb 
CO 

2.0 
CO 

3.2 
3.0 

OO 

5.0 
3.8 
3.2 
2.4 
2.2 

The apparently anomalous value of t„ for Expt. 217 as 
compared with Expts. 191 and 192 is due to the former hav
ing been performed with a different preparation (probably 
slightly impure) which gave a higher explosion limit than 
the preparation used in the latter two experiments. 

groups, all in any group having been done at the 
same time and at very approximately the same 
temperature, and the data for the highest pressure 
non-explosive run in each group are also given at 
the beginning of each group. These non-explo
sive runs are designated by the symbol °o in the 
"te, obs." column. In Table IV we give some 
examples illustrating the method by which Q/CM 

is calculated from the observed time. The first 
row gives the absolute temperature; the second 
the logarithm of the ratio of the pressure P of 
the particular experiment to the critical explo
sion pressure Pi*; the third row gives the ob
served induction period in seconds; the fourth 
row gives log A, which differs in different cases 
because of the falling off of the rate constant 
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TABLE III 
INDUCTION PERIODS FOR ETHYL AZIDE EXPLOSIONS 

Expt. 

428 
429 
401 
402 
400 
399 
423 
425 
408 
406 
411 
412 
416 
414 
413 

336 
337 
335 
330 
332 
331 
444 
443 
442 
324 
325 
323 
322 
320 
319 
318 
317 
316 
315 
314 
201 
202 
206 
204 
203 
195 
194 
191 
192 
189 
188 
187 
380 
379 
378 
208 
207 
383 
382 
365 
364 

Temp., 
0 C. 

8th Azide 50-
265.5 
265.0 
269.8 
270.0 
269.8 
270.0 
274.2 
274.3 
279.7 
280.0 
290.1 
290.0 
300.3 
300.4 
300.1 

8th Azide 200 
258.5 
258.6 
258.6 
259.8 
260.0 
259.9 
260 
260 
260 
262.8 
262.1 
263.1 
263.0 
265.0 
265.0 
264.7 
264.9 
265.0 
265.2 
265.0 
265.1 
265.3 
265.1 
265.4 
265.0 
265.0 
265.0 
270.0 
270.1 
270.2 
270.4 
270.0 
270.0 
270.0 
270.0 
274.5 
274.5 
280.0 
280.0 
300.0 
299.8 

Press. 
(total), 

mm. 

CC. bulb 
108.7 
111.0 
73.2 
74.2 
74.5 
75.1 
50.9 
51.8 
34.1 
35.5 
17.9 
18.9 
9.6 

11.7 
15.1 

-cc. bulb 
104.7 
105.7 
107.0 
90.4 
92.9 
94.0 
85.0 
86.1 
86.9 
64.4 
72.0 
63.5 
65.7 
51.8 
53.3 
54.0 
54.5 
55.2 
55.2 
55.5 
58.5 
59.6 
55.5 
56.3 
58.0 
54.5 
55.5 
36.0 
36.8 
34.6 
35.2 
36.9 
32.3 
34.2 
37.0 
24.7 
25.5 
15.3 
16.5 
5.0 
6.2 

Ind. 
period, 

sec. 

OO 

4 
CO 

4 
4 
2 

CO 

4 
CO 

1.5 
CO 

2 
CO 

0.5 
.5 

CO 

6 
5 

CO 

5 
4.5 

CO 

5 
5 

CO 

6 
CO 

4.5 
CO 

5 
5 
4 
4 
3.5 
3.5 

CO 

3 
CO 

4 
3.5 

CO 

5 
CO 

4.5 
CO 

3.5 
3 

CO 

4 
3 

CO 

3.5 
CO 

2 
CO 

1 

5th Azide 200-cc. bulb 

102 
103 
130 
129 
118 
117 
101 
100 
122 
120 
123 

269.5 
270.0 
269.7 
270.1 
279.6 
280.0 
280.0 
280.0 
289.8 
289.8 
290.0 

36.8 
38.8 
36.7 
36.4 
17.3 
17.4 
15.0 
16.8 

9.5 
10.4 
10.4 

4 
CO 

4.5 
CO 

3 
CO 

3 
CO 

2 
1.5 

50.1% 5th Azide, 49.9% COj 200-cc. bulb 
107 
106 
115 
116 
126 
125 
124 

269.9 
269.8 
280.0 
280.0 
289.9 
289.7 
289.8 

73.0 
73.8 
34.9 
36.0 
19.0 
19.8 
19.8 

3 
CO 

3 
CO 

2.5 
1.5 

49.9% 8th Azide, 50.1% He 200-cc. bulb 

241 
240 
247 
248 
251 
250 
253 
252 
258 
256 
255 
254 

270.4 
270.7 
279.9 
280.0 
284.9 
285.3 
289.9 
289.9 
300.0 
299.8 
299.3 
300.0 

103.0 
103.5 
49.8 
52.7 
37.0 
38.6 
28.5 
29.0 
21.4 
22.7 
23.0 
24.6 

3 
CO 

1.5 
CO 

1.5 
CO 

1 
CO 

0.5 
.5 
.5 

66.3% 8th Azide, 33.7% He 200-cc. bulb 

265 
264 
266 
267 
268 
270 
271 
272 
276a 
276 
283 
280 

270.0 
270.0 
274.2 
274.9 
280.1 
280.2 
285.0 
285.0 
295.2 
295.3 
305.6 
305.7 

67.7 
68.8 
48.7 

.47.0 
31.0 
32.0 
23.7 
25.0 
12.8 
13.8 
8.3 

11.0 

3 
CO 

3.5 
CO 

3 
CO 

2 
CO 

1.5 
CO 

1 

with pressure; the fifth row gives the value9" of 
k*; the sixth row gives trial values of 17.6 9; 
from these are calculated I and / ' , which are 
given in rows seven and nine; to get I' re
quires also the value of / , given in row eight, 
which is obtained from the values of P/Pi* 
and 9 by use of Equation (13) and Fig. 2; in 
the tenth row are given the calculated values for 

(9a) This quantity was calculated using 40,000 as the activation 
energy for ethyl azide; this was not the final best value, but a cor
responding value of A was used, and the error thus made was small. 
For azomethane the activation energy is 51,200-
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TABLBIV 

CALCULATIONS OP Q/Cst FOR EXPTS. 156 AND 187 OF 

TABLB V 

CALCULATION OF Q/CU AND Q 
TABLE II AND 316 OF TABLE III 

T0 

Log (PfP1*) 
U (obs.) 
Log A 
k* 
17.6 6 

- log/ 

r 
U (calcd.) 
17.6 0expt. 
Q/Cu 

644.5 
0.048 
1.4 
15.85 
0.083 

.09-0. 
7.60-7. 
0.107-0.111 
3.69-3.71 
1.39-1.54 
0.091 
1560 

.10 

.50 

632.5 
0.106 
2.0 
15.95 
0.049 

.09-0.10 

.61-5.56 

.165-0.169 

.08-4.11 

.02-2.24 
0.089 
1530 

538.0 
0.020 
4.0 
13.915 
0.0313 

.08-0.09 
10.22-10.02 
0.074-0.079 
3.49-3.52 
3.98-4.43 
0.080 
1580 

the induction period, obtained from the formula 
tQ = 2Q(I + I')/k*; from these we obtain by com
parison with the observed value of /c and by in
terpolation the experimental value of 17.6 9, and 
this enables us to calculate Q/CM. from Equation 
(14). Table IV shows the order of magnitude 
of the various quantities involved. The first run 
presented is an extreme case as regards the relative 
importance of I' and I. In all others, I is con
siderably larger than I', the other examples given 
being typical. 

In Table V we give in condensed form the re
sults of all calculations of Q/C^. This table 
covers all experiments given in Tables II and III 
in which the pressure was more than 1.04 times 
the critical pressure. In most cases the critical 
pressure used was simply the average of the pres
sures of the highest non-explosive and the lowest 
explosive runs of the particular group of experi
ments to which the run belonged, all runs having 
been made primarily to determine the explosion 
limits; but in the case of pure azomethane it was 
considered more accurate (on account of tempera
ture fluctuations in a given series) to draw a 
smooth curve through the values of Pi* plotted 
as a function of T and then to read Pi* from the 
curve. 

In order to get Q we have made an attempt to 
estimate roughly the specific heats of azomethane 
and ethyl azide. Though the Raman spectra of 
these substances have apparently not been ob
tained, we may nevertheless assign approximate 
frequencies to each of the bonds or modes of vi
bration in these molecules, on the basis of the 
Raman spectra of similar compounds.10 These 
can then be translated into contributions to the 

(10) Kohlrausch, "Der Smekal-Raman Eflekt," Verlag Julius 
Springer, Berlin, 1931, especially pp. 154, 157, 306, 314; Z. Elektro-
chem., 40, 429 (1934). 

Expt. 

156 

145 
140 

173 
171 

170 
169 
177 

191 
201 
202 
206 
187 
212 
222 

Zb Log 
P/Pi* 

Log 
A 

U, 
obsd., 
sec. 

644.5 
651.5 
636.6 

0.048 
.041 
.028 

CM cal./ 
mole 

QICn. deg. 
100% (CH3J2N3 

15.85 1.4 1560 25.7 
15.82 1.2 1410 
15.88 3.1 1170 

67.5% (CHs)2N2, 32.5% He 
636.9 0.040 
625.0 .023 
625.0 .030 
625.0 .038 
650.0 .035 

15.91 
15.96 
15.96 
15.96 
15.83 

2.0 
3.0 
2.6 
2.6 
1.0 

1570 
2230 
2450 
2310 
1780 

27.1 

40.8% (CHa)2N2, 59.2% He 
644.7 0.032 15.88 1.4 1560 30.0 
629.8 
629.7 
632.4 
632.5 
640.9 
650.0 

.042 

.020 

.034 

.106 

.017 

.015 

15.95 
15.95 
15.93 
15.95 
15.91 
15.86 

1450 
1590 
1430 
1530 
1180 
1020 

23.7% (CHs)2N2, 76.3% He 
224 635.0 0.068 15.95 2.2 1280 35.3 
225 634.8 .044 15.94 2.4 1350 
226 634.8 .018 15.94 3.2 1190 

50.7% (CHa)2N2, 49.3% N2 

281 634.3 0.021 15.91 3.6 1130 30.5 
284 647.8 .071 15.84 2.0 830 
285 648.2 .037 15.83 2.0 940 

100% C2H6N3 No. 8 
314 538.0 0.023 13.915 3.5 1790 
316 538.0 .020 13.915 4.0 1580 
378 543.0 .044 13.900 3.0 1340 
315 538.3 .021 13.915 3.5 1800 
413 573.2 .150 13.857 0.5 1200 

25.3 

Q 
cal./ 
mole 

40000 
36200 
30000 

42500 
60500 
66400 
62600 
48200 

46800 
43500 
47700 
42900 
45900 
35400 
30600 

45200 
47700 
42000 

34500 
25300 
28700 

45300 
40000 
33900 
45500 
30400 

49.9% C2H6N8 No. 8, 50.1% He 
255 572.4 0.018 13.842 0.5 1970 28.3 55700 
254 573.1 .047 13.846 .5 1500 42500 

specific heat. Table VI gives the results. The 
degeneracy values in the second column were 
obtained from simple geometrical considerations. 
The azide radical was assumed to be linear. The 
frequencies in the third column are estimated, 
following Kohlrausch. The N = N frequencies 
in both azomethane and ethyl azide are assumed 
equal to the C = O frequency in ketones. The 
"skeleton bending" frequencies are merely a very 
rough guess; but their values are undoubtedly 
lower than the other frequencies, and since at the 
temperatures used such low frequencies are 
nearly fully excited, their exact value does not 
matter much. Contributions to Cv (fourth 
column) are calculated for each vibrational de-
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gree of freedom by the formula Cv = RQiv)2 

ehv/kT/(kTy {l-eh"/kT)\ with T taken as 6200K. 
for azomethane and 55O0K. for ethyl azide. The 
result can lay no great claim to accuracy; we 
should expect, however, that its probable per
centage error is no greater than that of our deter
mination of Q/CM- In view of the other uncer
tainties involved we have not thought it worth 
while to consider the change of specific heat with 
temperature for the small temperature range avail
able. 

TABLE VI 

CALCULATION OF SPECIFIC HEATS 
Degree of v, Cv, cal. 
freedom Degeneracy cm. ~ l per mole 

Azomethane 

Translation 
Rotation 
C—H stretching 
C—N stretching 
N = N stretching 
C - H bending 
Skeleton bending 

Total C 

3 
5 
6 
2 
1 

10 

2940 
1035 
1714 
1430 

3 600 

for azomethane = 

2.98 
4.96 
0.62 
2.52 
0.62 
8.94 
5.10 

= 25.7 

Ethyl azide 

Translation 
Rotation 
C—N stretching 
C—C stretching 
N = N stretching 
C—H stretching 
C—H bending 
C—H bending 
Skeleton bending 

Total C 

3 
5 
1 
1 
2 
5 
7 
2 

900 
1050 
1800 
2940 
1430 
1200 

4 400 

, for ethyl azide = 

2.98 
4.96 
1.28 
1.08 
0.81 

.27 
4.87 
1.83 
7.23 

= 25.3 

Using these values of Cv, we have calculated Q 
for azomethane and ethyl azide. For the mix
tures the formula of §1 for CM is used, CG being 
taken as 3.0 cal. per mole for helium, and 4.9 for 
nitrogen.11 The results are given in the last 
column of Table V. 

Over the temperature range for which it is 
possible to make measurements Q should be 
approximately constant. It will be seen that the 
values actually obtained vary considerably, but 
in view of the considerable errors necessarily in
volved the variation does not seem excessive. 
Errors may occur in the actual measurement of 
the induction period, which is very short, and 
may also be due to slight changes in temperature 
during a series of runs, which causes the explosion 
limit to be determined for a slightly different 
temperature than that at which the given run 

(11) "International Critical Tables." 

was made. Any error in the explosion limit due 
to this or any other cause produces a relatively 
large error in Q. But perhaps the greatest source 
of error is the finite time which is required for the 
gas to enter the reaction vessel. This was espe
cially great in the case of ethyl azide, as noted 
in the preceding paper,2b and the pressure in the 
reaction bulb had not, in general, become quite 
equalized with the storage bulb before the stop
cock was closed. However, since the largest 
portion of the gas undoubtedly rushes in almost 
immediately, and since in almost all cases the 
stopcock can be closed before the explosion occurs, 
we believe that the results are of significance even 
though considerable error can no doubt be caused, 
and the effect should be partly neutralized by the 
fact that the same error enters into the determina
tion of the explosion limit. In general, the varia
tions in Q seem to be quite random, the only ap
parent exception being the values of Q for azo
methane in the presence of nitrogen. It is im
possible to say whether this variation, for which 
no obvious explanation is available, is real or not. 

The final average values of Q are 43,000 calories 
per mole for azomethane and 42,000 for ethyl 
azide. It is possible that these values not only 
are subject to the errors inherent in the experi
ments, but also contain systematic errors due to 
the assumptions made in the theory, particularly 
the assumption that the rate at which heat is re
moved from the vessel is simply proportional to 
the difference in temperature between the gas 
and the wall of the vessel. However, since the 
proportionality constant in this expression does 
not enter into the final results at all, it seems likely 
that the result will not be very sensitive to the 
form of the expression, either. We believe that 
the values of Q given are probably correct to 
within about 10,000 calories per mole. 

§5. The Attainment of Temperature Equilibrium 
in a Reaction which Is Not Exothermic 

When the rate of an ordinary non-explosive re
action is measured, the gas is admitted to a heated 
reaction vessel at a certain time, and it is assumed 
that the time required to heat it to the tempera
ture of the vessel is negligible. The considera
tions of the present paper give us the possibility 
of discussing this assumption; we can learn some
thing about heat transfer in non-explosive gases, 
whose decompositions are slightly exothermic or 
endothermic (or which do not react at all) by in 



Nov., 1935 T H E INDUCTION PERIOD IN 

ference from the properties of the explosive gases 
as deduced in the preceding sections of this paper. 

The results of the last section show that the 
length of time required to heat the gas up to the 
temperature of the vessel is generally only a 
fairly small fraction of the entire induction period. 
This is due in part to the fact that, as the tempera
ture of the vessel is approached, the gas begins 
to decompose, giving out heat and warming itself 
up. If the reactions were not so exothermic it 
would take considerably longer for the final 
temperature adjustment to occur, and if it were 
endothermic the situation would be even less 
favorable. In the case in which the reaction 
neither gives out nor absorbs heat, the rate of in
crease of temperature is given by Equation (1) 
with the first term on the right-hand left out, and, 
using t instead of r, we see that the time required 
to heat up the gas from a temperature T0 — T' 
to a temperature, To — T", say, is given by 

t = - f ~ T " £ ^ „. £ t a r/r> (i8) 
J-T' ax T ax 

If we could determine x it would thus be possible 
to find how long it takes for a gas to heat up to 
within, say, 1° of the temperature T0 from a tem
perature, say, 100° below. Now x can be deter
mined for the explosive gases from the value of 
/ , and we may reasonably assume that it is the 
same order of magnitude for all gases. From 
the definitions of / (following Equation (4)) and 
B, we have 

nt K VEk* 
Qn0 RTJ J RT0

2 ' K ' 
Remembering that C = CMWo V we have 

Taking, for example, the data from the first run 
in Table IV we get ax/C = 6.3 sec.-1, while if 
VIT" = 100 then t from Equation (18) is equal 
to about 0.7 second. In this case the total pres
sure is about 32 mm. and the experiment was 
done with a 200-cc. flask. Since C is proportional 
to M0 and V it is seen that this time would be in
creased at higher pressures and with larger ves
sels. The matter is somewhat complicated by 
the fact that the results of our previous work2 

indicate that x is not a true constant, but it is 
fairly obvious that with pressures up to an at
mosphere and with conditions under which re
action rates are usually run, the gas will come 
to nearly the temperature of the flask within at 
most half a minute. It may be well to note that 
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this is far faster than equilibrium could be estab
lished by heat conduction alone, and convection 
must play an important role in the mechanism 
of heat transfer. 

In the case of a non-explosive run of a gas which 
does react exothermally, the time necessary to 
reach what is essentially a steady state tempera
ture should require a length of time of the order 
of magnitude of the induction period in an explo
sive run. According to the simple Semenoff 
theory the temperature rise T should never reach 
a value greater than T* == RTs?/E in a non-explo
sive run. An examination of Fig. 1 shows that 
actually in a run near the explosion limit the tem
perature surges up above that value and then 
drops back again. Excepting for a run exceed
ingly close to the explosion limit we may judge 
from Fig. 1 that all this will take place in a time 
not more than two or three times that occupied 
by the actually observable induction periods. 
Since this time is, in general, small compared to 
the half life of the decomposing substance, the 
calculation made in §5 of the paper of Allen and 
Rice2a should be valid in almost all cases. 

Appendix 

The solution of the functional equation (12) 
may be obtained by a series of successive approxi
mations in the following manner. We define a 
quantity / ' by the equation 

/ = fe-eh(f) (A) 
and take as a first approximation to /( / ) the 
quantity /](/) defined by 

/,(/) = eeh(f) I0(J') (B) 
We then insert this quantity I1(J) into the right-
hand side of Equation (12) in place of 1(J) to get 
a second approximation 

I2(J) = eeh(f) j0(/ee/l(.n) (C) 
We now insert h(j) into the right-hand side of 
Equation (12) and continue the process, getting 
finally for the »th approximation 

In(J) = eein-i(J) I0(JeQIn-i(f)) (D) 

If the process converges, that is, if /„(/) ap
proaches a limit as n becomes large, then it is easily 
seen that the limiting value of In(J) satisfies 
Equation (12) and may thus be identified with 
1(J). That the process does converge readily 
appears when one attempts to carry it out; in fact, 
/i is a sufficiently good approximation for our 
purposes and has been used in Fig. 2. The 
easiest way to get Ii as a function of / is to start 
with given values of / ' and 9. Equation (A) 
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then determines a value of / and Equation (B) 
gives the corresponding value of Ji; together 
they give a point on the curve for the given value 
of 9. 

Summary 

When the differential equation connecting 
temperature with time in an exothermic gas re
action is integrated, a sudden temperature rise, 
corresponding to an explosion, is found to be in
dicated above a certain sharply denned pressure. 

In an attempt to prepare N-pentamethylene 
salicylamide through the reaction of methyl 
salicylate and piperidine at 250° under hydrogen, 
Wojcik and Adkins1 obtained a product which 
they reported as phenyl N-pentamethylene ure-
than, *. e., C6H6OC(O)NC6Hi0. They suggested 
that the supposed urethan might be formed 
through the decarboxylation of salicylic acid 
followed by the reaction of phenol, carbon dioxide 
and piperidine. They apparently confirmed this 
hypothesis by obtaining the same product from 
phenol, carbon dioxide and piperidine as from 
methyl salicylate and piperidine. A further 
study of the postulated reaction has shown that 
the alleged urethan was a mixture of phenol and 
formylpiperidine, C6Hi0NC(O)H. An equimolec-
ular mixture of these two compounds has a con
stant and narrow boiling range about 10° higher 
than either component and shows an analysis for 
nitrogen very nearly the same as for the urethan. 
Similarly, the products reported as phenyl N-ra-
amyl and w-butyl-N-pentamethylene urethans 
have been found to be mixtures of formyl amines 
with phenol or butanol-1. 

The identification and isolation of formyl-
amines from the reaction products of hydrogen, 
carbon dioxide, amines and alcohols led to a study 
of the hydrogenation of carbon dioxide. The 
significant numerical results are given in the table 
and may be summarized as follows. 

The hydrogenation of carbon dioxide to formic 
(1) Wojcik and Adkins, T H I S JOURNAL, 56, 2461 (1934). 

From curves of this type, an approximate method 
for calculating the induction period in thermal 
explosions has been obtained, and has been 
applied to the explosions of azomethane and 
ethyl azide. Rough values of the heats of de
composition of these compounds are thereby 
obtained. A discussion is given of the rate at 
which a gas not reacting exothermically comes 
into thermal equilibrium when admitted to a 
heated vessel. 
CAMBRIDGE, MASS. RECEIVED JUNE 1, 1935 

acid in the presence of an amine takes place at 
80° or less over Raney nickel. 

CO2 + H3 —>• HCO2H 
HCO2H + RNH2 —> HCO2NHSR 

For example, after one hour at 80° l-Ph-2-amino-
propanol-1 was converted to the formate in a 
yield of 55% based upon the amine, the carbon 
dioxide and hydrogen being in excess. The rate 
and temperature necessary for hydrogenation 
apparently varies with the structure of the amine 
as well as with the catalyst. At a sufficiently 
high temperature (250°) sheet brass, such as has 
been used in this Laboratory for fabricating liners 
for steel reaction vessels, is an active catalyst for 
the hydrogenation. If the hydrogenation is 
carried out at a temperature much above 100° 
in the presence of a primary or secondary amine, 
the formate is dehydrated and the amide (formyl-
amine) is obtained. 

HCO2NH8R —> HC(O)NHR + H2O 
Since a variety of substances may be present 

under the conditions used for the hydrogenation, 
it is not possible to formulate with certainty the 
course of the reaction. Carbon dioxide might re
act with a primary or secondary amine with the 
formation of a carbamate 

2R2NH + CO2 —*- R2NC(O)ONH2R2 

or since traces of water are present a carbonate 
might be formed 

R2NH + CO2 + H2O —>- (R2NHs)2O2CO 
Dehydration of the carbonate would give the 
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